Inspired by Paul Groves

1. $aA + bB + \ldots \rightleftharpoons rR + sS + \ldots$ Law of Mass Action:

$$\mathsf{K}_{\mathsf{c}} = \frac{[\mathsf{R}]^{\mathrm{r}}[\mathsf{S}]^{\mathrm{s}} \cdots}{[\mathsf{A}]^{\mathrm{a}}[\mathsf{B}]^{\mathrm{b}} \cdots}$$

and for gases:

$$\mathsf{K}_{\mathsf{P}} = \frac{(\mathsf{P}_{\mathsf{R}})^{r} (\mathsf{P}_{\mathsf{S}})^{s}}{(\mathsf{P}_{\mathsf{A}})^{a} (\mathsf{P}_{\mathsf{B}})^{b}}$$

- 2. K > 1 Products Favored
 - K < 1 Reactant Favored
- Excluded: solids, liquids including water in aqueous solutions. Why: because their []'s don't change
- Convert Kc to Kp Kp = Kc(RT)^{Δn} Where Δn = mol of (g) products – mol of (g) reactants
- **5.** Typical question: Given K_C and the starting concentrations of reactants, find concentrations of products at equilibrium.

Example: K_C for acetic acid = 1.8 x 10⁻⁵. What is the equilibrium concentration of [H⁺] in a 0.100 M solution of the acid?

- 6. Relationship between modifying a chemical equation and the value of K
 - Reverse a rxn = 1/K_{forward}
 - Multiplying by a number "n" = Kⁿ
 - Adding rxns = $K_{overall} = K_1 \times K_2 \times ...$
- Le Chatelier's Principle: effect of changes in concentration, pressure and temperature. Equilibrium always "shifts" away from what you add and towards what you remove. "Stress" means too much or too little: chemical, heat, or volume.

A BLUFFER'S GUIDE

- 8. If NOT at equilibrium (or you don't know if at equilibrium or not): Calculate Q, the reaction quotient.
 - Set up the same way as if calculating K
 - If K < Q
 - Numerator too large
 - Denominator too small
 - Too many products Not enough reactants
 - Reverse rxn is favored to reach equilib.
 - "Shift left"
 - lf K > Q
 - Numerator too small Denominator too large
 - Not enough products Too many reactants
 - Forward rxn is favored to reach equilib.
 - "Shift right."

9. ICE Box

Example: $A \rightleftharpoons 2B + C$

·	Α	В	С
initial	5.0 M	0 M	0 M
change	-X	+2x	+X
equilibrium	5.0-x	2x	х

"C" row follows the stoichiometry of the rxn

10. The 5% rule allows us to approximate

- K must be < 1
- Usually able to be used if K is at least 1000 times smaller than []initial
- x must be \leq 5% of the []initial
- If 5% rule doesn't work then use quadratic equation (not often seen on AP Exam)

$$x = \frac{ax^2 + bx + c = 0}{\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}$$

11. "Perfect Squares" are another way math is sometimes simplified.

 $3x10^{-6} = (x)(x) / 0.1$ take $\sqrt{}$ of both sides and you get 1.73 x $10^{-3} = x / 0.316$ now solving for x is super easy.

Based on a handout by William Bond, Snohomish HS Good for solving quadratic, cubic, etc for ICE Tables if no graphing calculator https://www.mathpapa.com/equation-solver/